مقالات

هيرتا أيرتون

هيرتا أيرتون


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

فيبي (هيرتا) ماركس ، ابنة صانع ساعات ، ولدت في بورتسي ، هامبشاير ، في 28 أبريل 1854. تلقت تعليمها في المنزل وكانت إحدى معلميها إليزا أورمي ، التي علمتها الرياضيات. منذ سن السادسة عشرة عملت مربية. واتخذت اسم "هيرتا" نسبة إلى بطلة قصيدة ألجرنون تشارلز سوينبورن التي انتقدت الدين المنظم.

في عام 1875 ، كتب أورمي إلى هيلين تايلور ليخبرها برغبة هيرتا في دراسة الرياضيات في كلية جيرتون. بمساعدة مالية من تايلور وباربرا بوديتشون ، تمكنت من حضور مؤتمر غيرتون بين عامي 1877 و 1881.

بعد أن تركت الجامعة درست في نوتينغ هيل ومدرسة إيلينغ الثانوية. في عام 1872 انضمت هيرتا ماركس إلى فرع هامبستيد للجمعية المركزية لحق المرأة في التصويت. في عام 1885 ، تم عرض مقسم الخط الذي اخترعته وحصلت على براءة اختراع في معرض الصناعات النسائية الذي نظمته هيلين بلاكبيرن في بريستول. في عام 1885 تزوجت من البروفيسور ويليام آيرتون ، وهو أرمل كانت زوجته الأولى ، ماتيلدا شابلن أيرتون (1846-1883) ، طبيبة وعضوة في جمعية لندن الوطنية لحق المرأة في التصويت. كان والد إديث أيرتون ، التي لعبت فيما بعد دورًا مهمًا في النضال من أجل حق المرأة في التصويت. ولدت باربرا أيرتون ، ابنة هيرتا ، عام 1886.

واصلت هيرتا أيرتون بحثها العلمي ، حيث عملت في مختبر في منزلها. كما ظلت نشطة في جمعية لندن الوطنية لحق المرأة في التصويت والاتحاد الوطني لجمعيات حق الاقتراع. شعرت بالإحباط بسبب عدم إحراز تقدم في تحقيق التصويت ، قبلت أن هناك حاجة إلى نهج أكثر تشددًا ، وفي عام 1907 انضمت إلى الاتحاد النسائي الاجتماعي والسياسي. تركت باربرا بوديتشون مبلغًا كبيرًا من المال ، وقدمت أيضًا بسخاء إلى WSPU. تظهر حسابات 1909-10 WSPU أنها منحت 1060 جنيهًا إسترلينيًا في ذلك العام. في عام 1910 انضمت إلى إيميلين بانكهورست وإليزابيث جاريت أندرسون في إنتداب إلى مجلس العموم.

في رسالة كتبتها إلى مود أرنكليف سينيت ، اعترفت هيرتا: "لقد اتخذت قراري منذ بعض الوقت لأنني لا أستطيع أن أكون متشددة ، لأسباب صحية ، ولأنني أؤمن تمامًا بضرورة التشدد ، كان لا بد أن أعطي كل قرش يمكنني تحمله للنقابة المسلحة التي تتحمل وطأة المعركة ، وهي WSPU ".

في مارس 1912 أوضحت الحكومة البريطانية أنها تنوي الاستيلاء على أصول WSPU. وفقًا لإيفلين شارب ، ساعدت هيرتا أيرتون في "غسل" أموال WSPU من خلال حسابها المصرفي. تم استدعاء مدير بنك WSPU للمثول في محاكمة المؤامرة وكشف أنه تم دفع 7000 جنيه إسترليني إلى "شخص يدعى أيرتون".

في نوفمبر 1912 ، ساعدت هيرتا أيرتون في تشكيل الرابطة اليهودية لحق المرأة في التصويت. كان الهدف الرئيسي هو "المطالبة بالامتياز البرلماني للمرأة ، بنفس الشروط التي تمنح أو قد تُمنح للرجال". كتب أحد الأعضاء أنه "شعر عدد كبير بضرورة تشكيل رابطة يهودية لتوحيد اليهود الذين يؤيدون حق التصويت على حق التصويت من جميع أطياف الآراء ، وأن الكثيرين سينضمون إلى رابطة يهودية ، وإلا فإنهم سيترددون في الانضمام إلى مجتمع سياسي بحت. . " ومن بين الأعضاء الآخرين إديث أيرتون ، وهنريتا فرانكلين ، وهيو فرانكلين ، وليلي مونتاجو ، وإنيز بيسسان ، وإسرائيل زانجويل.

قام المتشددون في الرابطة اليهودية من أجل حق المرأة في الاقتراع بتعطيل خدمات عبادة السبت في العديد من المعابد اليهودية في لندن من أوائل عام 1913 حتى اندلاع الحرب العالمية الأولى ، مطالبين بالاقتراع الديني والسياسي للنساء. تم إبعاد هؤلاء النساء قسراً من المعابد لتعطيلهن الخدمات وتم انتقادهن في الصحافة الأنجلو يهودية بوصفهن "حراس أسود في قلنسوات".

شهد صيف عام 1913 تصعيدًا إضافيًا لعنف اتحاد WSPU. في يوليو / تموز ، بذلت المناصرات بحق الاقتراع محاولات لإحراق منازل اثنين من أعضاء الحكومة كانا يعارضان حصول المرأة على حق التصويت. فشلت هذه المحاولات ، ولكن بعد ذلك بوقت قصير ، تعرض المنزل الذي يتم بناؤه لديفيد لويد جورج ، وزير الخزانة ، لأضرار بالغة بسبب حق الاقتراع. تبع ذلك إحراق أجنحة للكريكيت ومضمار سباق ونوادي الجولف.

اختلف بعض قادة WSPU مثل Emmeline Pethick-Lawrence مع حملة الحرق العمد هذه. عندما اعترضت Pethick-Lawrence ، تم طردها من المنظمة. أظهر آخرون مثل لويزا جاريت أندرسون وإليزابيث روبينز عدم موافقتهم بالتوقف عن النشاط في WSPU. قامت سيلفيا بانكهورست أيضًا باستراحة نهائية مع WSPU وركزت جهودها على مساعدة حزب العمال في بناء دعمه في لندن. خلال هذه الفترة ، توقف هيرتا أيرتون عن تمويل WSPU.

في فبراير 1914 ، أصبحت هيرتا عضوًا قياديًا في حركة حق الاقتراع المتحد. شعرت المجموعة بخيبة أمل بسبب عدم نجاح الاتحاد الوطني لجمعيات حق المرأة في الاقتراع ورفضت حملة الحرق العمد للاتحاد الاجتماعي والسياسي للمرأة ، وقررت تشكيل منظمة جديدة. كانت العضوية مفتوحة لكل من الرجال والنساء والمقاتلين وغير المقاتلين. وكان من بين الأعضاء إيميلين بيثيك لورانس ، وفريدريك بيثيك لورانس ، وإيفلين شارب ، وهنري نيفينسون ، ومارجريت نيفينسون ، وإديث أيرتون ، وإسرائيل زانجويل ، ولينا أشويل ، ولويزا جاريت أندرسون ، وإيفلين هافرفيلد ، ومود أرنكليف سينيت ، وجون سكور ، وجوليا سكور ، ولورنس هوسمان.

خلال الحرب العالمية الأولى ، ابتكر هيرتا أيرتون مروحة بسيطة مضادة للغاز يمكن استخدامها في الخنادق على الجبهة الغربية. لسوء الحظ ، لم تتمكن من إقناع الجيش البريطاني باستخدام الجهاز.

توفيت هيرتا أيرتون في 23 أغسطس 1923.


هيرتا ماركس أيرتون: الاختراعات والحقائق والسيرة الذاتية لعالم القوس الكهربائي البريطاني

رسم الشعار المبتكر من تصميم الفنانة ليديا نيكولز ويظهر العالمة الشهيرة محاطة بتموجات - وهي إحدى النتائج الرئيسية التي توصلت إليها وتوضح إرثها كمهندسة.

تظهر رسومات الشعار المبتكرة على متصفحات الإنترنت في المملكة المتحدة ومصر وأيسلندا وقطر وسنغافورة وإسبانيا وتونس.


هيرتا أيرتون ليندي فيبي سارة ماركس në Portsea، Hampshire، Angli، më 28 Prill 1854. Ajo ishte fëmija i tretë i një orëndreqësi polak hebre، i quajtur Levi Marks، një emigrant nga Polonia Cariste dhe Alice Theresa Moss، një rossrobaqepse، e bija në بورتسي. [1] Babai i saj vdiq në 1861 ، duke lënë nënën e Sarës me shtatë fëmijë dhe një të tetë në pritje. Sarah pastaj mori një pjesë të përgjegjësisë për t'u kujdesur për fëmijët më të vegjël.

Në moshën nëntë vjeçare، Sarah u ftua nga tezet e saj، të cilat drejtonin një shkollë në veriperëndim to Londrës، to jetonte me kushërinjtë e saj dhe të edukohej me ta. Ajo ishte e njohur për kolegët dhe mësuesit e saj si një personalitet i zjarrtë، herë pas here i vrazhdë. [2] Kushërinjtë e saj e Futën Ayrton në shkencë dhe matematikë. Në moshën 16 vjeç، ajo po punonte si guvernante. [3]

Në Girton ، Ayrton studio matematikë dhe drejtohej nga fizikani ريتشارد جلازبروك. كلية جورج إليوت mbështeti kërkesën e Ayrton për Girton. Gjatë kohës së saj në Kembrixh، Ayrton ndërtoi një sifgmomanometër (matësi i presionit të gjakut)، drejtoi shoqërinë korale، themeloi brigadën e zjarrit Girton dhe، së bashku njarrit girton dhe، së bashku nj. Në 1880، Ayrton kaloi Tripos Matematike، por Kembrixh nuk i dha asaj një dynamicë akademike sepse، në atë kohë، Kembrixh u dha vetëm certifikata dhe jo gradë to plotë grav. Ayrton kaloi një provim të jashtëm në Universitetin e Londrs، i cili i dha asaj një Diplomacyë البكالوريوس të Shkencave në 1881. [4] [5]

Pas kthimit to saj në Londër، Ayrton fitoi para dhënë mësim dhe qëndisje، drejtoi një klub për vajzat që punonin dhe kujdesej për motrën e saj invalide. Ajo gjithashtu i vuri në përdorim aftësitë e saj matematikore - ajo dha mësim në Notting Hill dhe Shkollën e Mesme Ealing، dhe gjithashtu ishte aktive në hartimin dhe zgjidhjen، sheve dhe zgjidhjen نجا Edicioni Times Në 1884 Ayrton patentoi një ndarës linje، një Instrument vizatimi inxhinierik për ndarjen e një linje në ndonjë number to pjesëve to barabarta dhe pr zmadhimin dhe zvogëlimin e figurave. Ndarësi i linjës ishte shpikja e saj e parë e madhe dhe ndërsa përdorimi i tij kryesor ishte i mundshëm për artistët për zgjerim dhe zvogëlim، ai ishte gjithashtu i dobishitem përdorimi. [6] براءة اختراع Kërkesa për e Ayrton u mbështet financiarisht nga Louisa Goldsmid dhe feministja Barbara Bodichon، të cilat së bashku i dhanë para të mjaftueshme për to marrë nda shpikja u shfaq në Patenta e Ayrtonit në vitin 1884 ishte e para nga shumë - nga 1884 deri në vdekjen e saj، Hertha regjistroi 26 براءة الاختراع: pesë në ndarëset matematikore، 13 në llambat e harkut dhe elektrodat، pjesa atyritr.

Në 1884 Ayrton ملء të ndiqte klasat e mbrëmjes në lidhje me energjinë elektrike në Kolegjin Teknik Finsbury ، të mbajtur nga البروفيسور ويليام إدوارد أيرتون ، një pionier në inxhinieri elektrike dhe edukq. 6 maj 1885 ajo u martua me ish mësuesin e saj dhe më pas e ndihmoi atë me eksperimente në fizikë dhe energji elektrike. Ajo gjithashtu filloi hetimin e saj për karakteristikat e harkut elektrik. [1]

لا يوجد تمويل لـ shekullit XIX ، ndriçimi i harkut elektrik ishte në prdorim të gjerë për ndriçimin publik. Prirja e harqeve elektrike për to dridhur dhe fërshëllyer ishte një problem i madh. Në 1895، Hertha Ayrton shkroi një seri artikujsh për إلكتريسيستين، duke shpjeguar se këto fenomene ishin rezultat i oksigjenit që bie në kontakt me shufrat e karbonit to përdorura për to krijuar harkun. 1899 ، ajo ishte gruaja e parë që lexoi letrën e saj para Institucionit to Inxhinierëve Elektrik (IEE). Punimi i saj titullohej "Hissing of the Arc Arc". Pas pak، Ayrton u zgjodh anëtarja e parë femër e IEE gruaja tjetër që u pranua në IEE ishte në 1958. Ajo bëri peticion për të parqitur një letër përpara Shoqërisë Mbretëjktore por nuk shoqërisë Mbretëjktur "u lexua nga John Perry në vend të saj në 1901. [2] Ayrton ishte gjithashtu gruaja e parë që fitoi një çmim nga Shoqëria، Medaljen Hughes، i cili iu dha asaj në 1906 për nder të satimit rërë dhe ujë dhe Punën e saj në harkun elektrik. [1] Nga Fundi i shekullit to nëntëmbëdhjetë، puna e Ayrtonit në fushën e inxhinierisë elektrike u njoh më gjerësisht، brenda dhe ndërkombëtarisht. Në Kongresin Ndërkombëtar to Grave to mbajtur në Londër në 1899، ajo kryesoi seksionin e shkencave fizike. Ayrton gjithashtu foli në Kongresin Ndërkombëtar Elektrik në Paris në 1900. Suksesi i saj atje bëri që Shoqata Britanike për Përparimin e Shkencës të lejojë freeë të shërbejns komit

رقم 1902 ، آيرتون بوتوي هاركون إلكتريك، një përmbledhje të hulumtimit dhe punës së saj mbi harkun elektrik، me origjinë në artikujt e saj të mëparshëm nga إلكتريسيستي أنا botuar midis 1895 dhe 1896. Me këtë botim، kontributi i saj në fushën e inxhinierisë elektrike filloi të çimentohej. Sidoqoftë ، Fillimisht të paktën ، Ayrton nuk u prit mirë nga shoqëritë shkencore më prestigjioze dhe tradicionale siç ishte Shoqëria Mbretërore. Si pasojë e botimit të القوس الكهربائي، Ayrton u propozua si anëtar i Shoqërisë Mbretërore nga inxhinieri i njohur elektrik John Perry në 1902. Aplikimi i saj u refuzua nga Këshilli i Shoqërisë Mbretërore، i cili vendosi qëreukish njotara njohur elektrik. [7] [8] Sidoqoftë، në 1904، ajo u bë gruaja e parë që lexoi një letër përpara Shoqërisë Mbretërore kur u lejua të lexonte letrën e saj "Origjina dhe rritja e markave të valzimit" شكريسو مبريتور. [2] [5] [9] Në 1906 ، ajo u dha Medaljen prestigjioze të Shoqërisë Mbretërore Hughes "për hetimet e saj eksperimentale në harkun elektrik، dhe gjithashtu në valëzimet e rërës". Ajo ishte marrësi i pestë i këtij çmimi، i dhënë çdo vit që nga viti 1902، n njohjen e një zbulimi original në shkencat fizike، veçanërisht të energjisë elektrike dhe magnetizmit nga viti 1902 nderuara kaq shumë، duke qenë Michele Dougherty në 2008. [10]

Si teenhente ، Ayrton u përfshi thellë në lëvizjen e votës për freeë ، duke u bashkuar me WSPU në 1907 pasi ndoqi një fistë me to burgosurit e liruar. Në 1909 Ayrton hapi ditën e dytë të Knightsbridge "Ekspozita dhe Shitja e Grave në Punë me Ngjyra" ، e cila përfshinte biçikleta modeli të ri të pikturuar në ngjyrë vjollcë ، të bardilehe dégég 5664 جنيه استرليني për lëvizjen. Ayrton ishte me dispacionin që shkoi me Emily Pankhurst për to parë Kryeministrin dhe u takua me sekretarin e tij private në vend të kësaj në 18 nëntor 1910 (e premtja e zezë). آيرتون ليجوي كريستابيل بانكهورست لتحويل شوما نو لوغارين و صاج بانكاري بور إلى شمانغور كونفيسكيمين ني 1912 في بريتي بانكهورست نو كوهو ريميوكومبجيس نغا بورغيمي دي أشكييرجيس لي فوركو. Një përpjekje për to rumbulluar përsëri Pankhurst më 29 Prill 1913 për të vazhduar me dënimin e saj، u kthye mbrapsht nga votuesit to grumbulluar jashtë، por Pankhurst u Arrestua përfëtshton pasi vrapoi në përpara kalit të Mbretit në Derby). [11]

Ayrton ishte një mik i ngushtë i shkencëtares Marie Curie dhe ajo i dha vajzës së saj، Irène Curie، mësime matematikore. [8] Megjithëse Curie zakonisht vendosi to mbajë emrin e saj nga çdo kërkesë، Ayrton arriti ta bindë atë të nënshkruante një protr burgosjes së votuesve prmes vajzës së saj.

Ishte përmes aktivizmit to votimit، që i mundësoi to takohej me aktivisten dhe bashkëthemeluesin e Kolegjit Girton to Kembrixhit، Barbara Bodichon. [12] Bodichon ndihmoi që të bëhej e mundur financiarisht të merrte pjesë në Girton dhe do të vazhdonte to mbështeste financiarisht Ayrton gjatë gjithë arsimit dhe karrierës së sashë drrr [13]

Ayrton dha shtatë letra përpara Shoqërisë Mbretërore midis 1901 dhe 1926 ، e Fundit pas vdekjes. [14] [15] [16] [17] [18] [19] [20] Ajo gjithashtu prezantoi rezultatet e kërkimit to saj para audiencave në Shoqatën Britanike dhe Shoqërinë Fizike. Interesi i Ayrtonit për vorbullat në ujë dhe ajër frymëzoi tifozin Ayrton ، ose flapper ، të prdorur në llogore në Luftën e Parë Botërore për të shpërndarë helmin dhe gazrat e ndyra. آيرتون لوفتوي بير برانيمين إي صاج ، أنا كيلي زجاتي نجي فيت نجا أوفريمي إي ساج ني زرين إي لوفتس بير تو بيردورور ن فوركات نو 1916 ، [11] تنظيمي برودهيمين إي تيج ، إم بي 100000 نيودوك بيردورور. [21]

Ayrton ndihmoi nëemelimin e Federatës Ndërkombëtare të Grave Universitare në 1919 dhe Bashkimin Kombëtar të Punëtorëve Shkencorë në 1920. Ajo vdiq nga helmimi i gjakut (si rezultat i kafshktse n 1919)

هيرتا أيرتون ishte agnostike. Në teenhencën e saj ajo miratoi emrin "Hertha" pas herinës eponime to një poezie nga Algernon Charles Swinburne që kritikoi fenë e Organizuar. [22]

Në 1885، Ayrton u martua me të venë William Edward Ayrton، një fizikan dhe inxhinier elektrik i cili ishte mbështetës i përpjekjeve to saj shkencore. أيرتون نديروى باربرا بوديتشون دوق إمورور فوميجين إي صاج تو بارو ، نجو فاجزو تي ليندور ني 1886 ، باربرا بوديتشون أيرتون (1886-1950). Vajza u quajt "Barbie"، dhe ajo më vonë u bë anëtare e parlamentit për Partinë e Punës. [2] Djali i vajz's së saj ishte الفنان مايكل أيرتون.


هيرتا ماركس أيرتون (1854-1923) & # 8211 حكايات من Wo-Fans Land

الخطأ الذي ينسب إلى الرجل ما كان في الواقع من عمل المرأة له حياة أكثر من قطة.

رسالة من هرتا أيرتون إلى جريدة وستمنستر جازيت ، ١٤ مارس ١٩٠٩

ربما يكون من الأفضل ألا نقرأ نعينا. لأنه إذا كانت هيرتا أيرتون - عالمة ومهندسة ومدافعة عن حق الاقتراع - قد قرأت المقالة بعد وفاتها في المجلة طبيعة سجية التي ذكرت أنه كان ينبغي عليها أن تقضي وقتًا أطول في إطعام زوجها و "وضعه في نعال السجاد" (1) بدلاً من التركيز على ريادتها العلمية ، فقد تكون مستاءة بعض الشيء.

هيرتا ماركس أيرتون: عالمة وناشطة ، لم تعطِ بالضبط أي شيء عن نعال زوجها. (الصورة: www.thehuffmanpost.com)

ولدت فيبي سارة ماركس في بورتسي ، هامبشاير ، المملكة المتحدة عام 1854 لعائلة مهاجرة بولندية ، وتوفي والدها عندما كانت صغيرة ، تاركًا الأسرة مفلسة. عادت والدتها للعمل لإعالة أطفالها الثمانية ، وغرس في سارة الاستقلال والذوق لمخالفة التقاليد التي ستبقى معها مدى الحياة. من خلال اكتشاف موهبة رائعة في الرياضيات ، دفعت عمة لسارة مقابل تعليمها رسميًا في العلوم ، حيث أظهرت قوة شخصية مستقلة توصف بأنها "نارية" (2). في سن السادسة عشرة ، كانت تعمل ، مكتفية ذاتيًا ماليًا واختارت إعادة اكتشاف نفسها برفض إيمانها واعتماد اسم هيرتا ، على اسم بطلة قصيدة معادية للدين (3). لابد أن قوم هامبشاير الذين يخشون الله كانوا يمسكون بلآلئهم ويغمى عليهم بشكل جماعي في وجه المتمردين المراهقين.

كما أنها أعطت إصبعًا يضرب به المثل للمعايير الراسخة من خلال تأمين مكان في كلية جيرتون الجديدة للإناث بالكامل ، كامبريدج. مع انتشار خبر مواهبها ولكن بدون ثروة شخصية لتحمل الرسوم ، تم تمويل طلبها من قبل نسويات بارزات في ذلك الوقت ، بما في ذلك ماري آن إيفانز - مؤلف AKA جورج إليوت. (أصبحوا أصدقاء مدى الحياة شخصية ميرا في رواية إليوت الأخيرة ، دانيال ديروندا، على أساس هرتا [5]). ازدهرت هيرتا في كامبريدج ، وبدأت مسيرتها العلمية المثيرة للإعجاب. على الرغم من نوبات المرض ، اجتازت امتحانات تريبوس (درجة النخبة للسادة الإنجليز ، التي ورد أنها قتلت الرجال بالفعل بسبب شدتها [6]). بالطبع ، على الرغم من بقاءها على قيد الحياة أكثر من هؤلاء الرجال الأقل قدرة على الصمود ، لم تستطع هيرتا في الواقع الحصول على الدرجة لأن النساء اللواتي يعانين من الحساسية يعتبرن غير مؤهلات لمثل هذه الأشياء ، لكن هذا لم يردعها. من المؤكد أن هيرتا أبقت نفسها مشغولة في كامبريدج ، من بين أمور أخرى تصميم نموذج أولي لمقياس ضغط الدم (ربما حتى تتمكن من مراقبة إلى أي مدى كان التمييز الجنسي الفيكتوري المتفشي يؤكد عليها).

هيرتا مع صغار الشغب في كلية جيرتون ، ١٨٧٨. (الصورة: أرشيف كلية جيرتون ، © The Mistress & amp Fellows)

بعد التخرج ، انتقلت إلى لندن ، حيث درست العلوم الجديدة للهندسة الكهربائية في كلية فينسبري. في حين أعربت مجلة Electrician عن استيائها من أن قبول النساء من شأنه أن "ينبه" المجتمع الرقيق (ويخاطر بأن تقوم النساء بتفجير أنفسهن) (7) ، تحولت هيرتا بدلاً من ذلك إلى مخترعة ، وخلقت فواصل معمارية ، وأقطاب كهربائية ومصابيح قوسية. أثبت عملها في هذا الأخير أنه تحويلي في عالم كانت فيه شوارع العاصمة قد بدأت للتو في الإضاءة الكهربائية على نطاق واسع. بينما كان رجال العلم يخدشون لحاهم بشكل جماعي لمعرفة سبب وميض الأضواء الجديدة المتشابكة باستمرار ، واصل هيرتا حل المشكلة فعليًا (يتفاعل الأكسجين مع قضبان الكربون ، إذا كنت فضوليًا). كانت ورقتها الثورية حول كيفية إصلاح المشكلة هي الأولى التي قدمتها امرأة في معهد المهندسين الكهربائيين المرموق (8) ، حيث أصبحت فيما بعد أول امرأة تنضم إلى العضوية. المشاهد شعرت بأنها مضطرة لطمأنة القراء أنه على الرغم من أن هيرتا كانت عالمة بارعة ، إلا أنها أيضًا "ليست غريبة" و "امرأة من كل النواحي" (9).

مع هذا النجاح في تحطيم السقف الزجاجي ، تقدمت هيرتا لتقديم الورقة في الجمعية الملكية أيضًا ، لكن تم رفضها بسبب (نعم) كونها أنثى. وعندما التمس لها أقرانها الذكور أن تصبح زميلة في الجمعية ، تم رفض ذلك أيضًا - ليس فقط بسبب كونها أنثوية مزعجة ولكن أيضًا لأنها كانت لديها الجرأة على الزواج (إلى الأستاذ ويل آيرتون ، مدرسها في فينسبري وهو من نعال السجاد التي لا تتغذى بشكل كافٍ). يعتقد رئيس الجمعية ويليام هوجينز أن قبول المرأة في الزمالة من شأنه أن "يقلل من أهمية" مؤسسة النخبة (10) ولكنه يخفي كراهيته للمرأة وراء القانون المعاصر ، الذي أصر على أن النساء المتزوجات لسن بشرًا في الواقع. لا حقا.

"القوس الكهربائي" - الورقة الحائزة على جوائز والتي تضيء الشوارع بالمعنى الحرفي والمجازي. (على الرغم من ملاحظة أن المؤلف يُنسب إليه الفضل فقط باسم "السيدة أيرتون".) الصورة: www.agnesscott.edu

لكنها ، أيها القارئ ، أصرّت. بحلول عام 1906 ، كسرت هيرتا أخيرًا النظام الأبوي للمجتمع الملكي ، حيث منحت دراساتها للقوس الكهربائي ميدالية هيوز المرموقة. (في وقت كتابة هذا التقرير ، كانت هناك امرأة واحدة فقط متلقية ، وكان ذلك في عام 2008. * تنهد *).

أدت دراساتها اللاحقة للدوامات الهوائية إلى اختراعها "مروحة آيرتون المضادة للغاز" المنقذة للحياة ، والتي تم استخدام 140.000 منها لإزالة الغازات الكيماوية السامة من خنادق الحرب العالمية الأولى. ليس سيئًا بالنسبة للمرأة التي ، على عكس أقرانها من الذكور ، لم يُسمح لها حتى بالوصول إلى المختبر في حد ذاتها وكان عليها أن تسأل زوجها بلطف إذا كان بإمكانها استعارته.

لم يكن هيرتا مجرد عالم متهور. أدى إحساسها بالعدالة الاجتماعية إلى إنشاء نوادي اجتماعية للفتيات العاملات ، وكونها ناشطة في حركة حق المرأة في التصويت. انضمت إلى إميلي بانكهورست في زيارة رئيس الوزراء في عام 1910 ، حيث قامت بإيواء نشطاء خلال قانون "Cat & amp Mouse" سيئ السمعة لعام 1913 ، وسمحت لعائلة Pankhursts بتوجيه أموال الاقتراع من خلال حسابها المصرفي الخاص لتجنب اكتشافها. (11) انضمت إليها ابنتها باربرا في مسيرات واعتقلت في عام 1912 ، وأعلنت هيرتا أن "باربي في هولواي [سجن]. . . أنا فخور جدا لها." (12)

توفيت هيرتا في عام 1923 ، ولكن على الرغم من التحديات التي واجهتها للحصول على الاعتراف خلال حياتها ، فقد اكتسب إرثها زخمًا مؤخرًا. يمكن للطالبات الواعدات التقدم بطلب للحصول على العديد من المنح الدراسية باسمها ، وفي عام 2017 أطلقت جامعة شيفيلد هالام اسم مركز العلوم والتكنولوجيا والهندسة والرياضيات الجديد على اسم هيرتا. (13)

ولكن الأفضل من ذلك كله ، في لفتة أخيرة من التحدي لأولئك في هامبشاير الذين كانوا سيقيمون في المطبخ لطهي العشاء لزوجها ، تم الكشف مؤخرًا عن لوحة زرقاء مرموقة من التراث الإنجليزي في منزلها السابق في بورتسي (14) مع أحد السكان المحليين سميت الشارع باسمها. لا يسع المرء إلا أن يأمل في أنه في كل مرة يسير فيها سكانها تحت التوهج الثابت غير الوامض لأضواء الشوارع الكهربائية ، فإنهم يولون تقديرًا هادئًا للمرأة التي جعلت ذلك ممكنًا.

شكر وتقدير أخيرًا (على الرغم من أن الملاحظة "تم ترشيحها" كزميل ... لم يتم قبولها في الواقع. اللعنة عليك ، ويليام هوجينز). الصورة: www.openplaques.org

بقلم كلير سيفيتر (هي / هي) من نيو فورست ، المملكة المتحدة. تابعوها على انستغرام! هذا المشروع، حكايات من Wo-Fan & # 8217s Land، هي سلسلة من القصص كتبها معجبو فرانك تورنر ، مستوحاة من ألبومه الجديد No Man & # 8217s Land.


الاحتفال بحياة هيرتا أيرتون

صورة لهيرتا أيرتون ، كلية جيرتون ، جامعة كامبريدج ، مقدمة من مؤسسة الكتالوج العامة.

عالمة رياضيات ومخترعة في وقت كان فيه عدد قليل من النساء يتمتعن بإمكانية الوصول إلى الفرص في العلوم والتكنولوجيا والهندسة والرياضيات.

ولدت أيرتون سارة فيبي ماركس في بورتسموث عام 1854 لعائلة مهاجرة فقيرة نسبيًا من أصل بولندي. كانت آيرتون مدعومة في طموحاتها التعليمية والمهنية ، أولاً من قبل أفراد الأسرة الميسورين ولاحقًا من مجتمع الاقتراع الأوسع - جميعهم تقريبًا من النساء. طوال حياتها ، كانت عضوًا نشطًا في مجتمع الاقتراع وتدافع عن حق المرأة في التصويت.

قدم آيرتون مساهمات مهمة في دراسة الأقواس الكهربائية ، التي استخدمت في أواخر القرن التاسع عشر والتسعينيات للإضاءة الداخلية والخارجية الكبيرة. أدى عملها على خصائص الأقواس الكهربائية إلى كونها أول امرأة يتم انتخابها في معهد المهندسين الكهربائيين ، الذي أصبح الآن IET. كانت أيضًا أول امرأة تقرأ ورقة بحثية في اجتماع الجمعية الملكية.

أسفرت أبحاثها اللاحقة عن دوامات الماء والهواء عن تطبيق منقذ للحياة ، وهو "مروحة آيرتون المضادة للغازات" ، وهي أداة يدوية بسيطة تُستخدم لإزالة الغازات الكيماوية السامة من خنادق الخطوط الأمامية خلال الحرب العالمية الأولى.

صفحة غلاف براءة الاختراع الأمريكية 310،450 & # 8216Draughtsman’s Dividing Instrument & # 8217 ، تم تقديمها في 3 مايو 1884 وتم منحها في 6 يناير 1885.

في عام 1863 ، عندما كانت آيرتون في التاسعة من عمرها ، دعتها عمتها ماريون هارتوغ ، التي كانت تدير مدرسة في شمال غرب لندن مع زوجها ألفونس هارتوغ ، للعيش مع أبناء عمومتها والتعلم معهم. تعرفت آيرتون على العلوم والرياضيات من خلال أبناء عمومتها ، وعندما بلغت السادسة عشرة من عمرها ، كانت تعيش بشكل مستقل وتعمل كمربية.

كان لدى آيرتون طموحات أكبر وكان عازمًا على الدراسة في جامعة كامبريدج ، على الرغم من حقيقة أن الجامعة لم تمنح درجات علمية للنساء.

في عام 1874 ، اجتازت آيرتون امتحان جامعة كامبريدج للسيدات بدرجة امتياز في اللغة الإنجليزية والرياضيات. بعد ذلك بعامين ، بدأت آيرتون في دراسة الرياضيات في كلية جيرتون ، إحدى الكليات القليلة المخصصة للإناث في جامعة كامبريدج. تمكنت من الحضور بفضل الدعم المالي من زملائها الأعضاء في مجتمعات العدالة الاجتماعية والنسوية ، والتي كانت مشاركًا نشطًا فيها.

كانت أيرتون أيضًا عضوًا نشطًا في مجتمع Girton College: كانت قائدة جمعية College Choral Society ، وأسست فرقة إطفاء الكلية ، كما أسست ناديًا للرياضيات. تخرجت أيرتون بدرجة ثالثة في عام 1880 ، ويرجع ذلك جزئيًا إلى المرض أثناء امتحاناتها. في عام 1881 ، حصلت على درجة البكالوريوس في العلوم الخارجية من جامعة لندن.

أثناء دراستها في كامبريدج ، بدأت آيرتون العمل على أول اختراع وبراءة اختراع لها ، مقسم خط. مقسم الخط هو أداة رياضية وأداة رسم هندسي وقد حصلت آيرتون على براءة اختراع للجهاز بعد تخرجها في عام 1884. وكانت هذه أول براءة اختراع من أصل ستة وعشرين براءة اختراع حصلت عليها خلال حياتها. تمت مراجعة فاصل الخط بشكل إيجابي من قبل المستخدمين وفي الصحافة العلمية ولكنه لم يكن نجاحًا تجاريًا.

صورة هيرتا أيرتون. رصيد الصورة: IET Archives UK.

في عام 1884 بدأ آيرتون في حضور الفصول المسائية ودرس الكهرباء والفيزياء في كلية فنسبري التقنية في لندن. درست أيرتون التقنيات الكهربائية (الكهرباء والفيزياء) في الكلية حيث كانت واحدة من ثلاث نساء يدرسن جنبًا إلى جنب مع 118 رجلاً. كان من بين المحاضرين في أيرتون خبير فيزياء ومهندس كهربائي مشهور البروفيسور ويليام إدوارد (ويل) آيرتون.

تزوجا عام 1885 ، بعد عام من لقائهما. بعد عام واحد ، رزقا بابنة ، باربرا بوديتشون ، سميت على اسم معلمه وداعمه. في عام 1891 ، توفي معلم أيرتون وباربرا بوديتشون التي تحمل الاسم نفسه لابنتها. تركت بوديتشون مبلغًا من المال لأيرتون مكن آيرتون من إعالة والدتها المسنة وتوظيف مدبرة منزل حتى تخصص المزيد من الوقت والطاقة لأبحاثها.

في أوائل تسعينيات القرن التاسع عشر ، بدأ آيرتون في البحث عن خصائص الأقواس الكهربائية. في البداية ، بدأت بمساعدة زوجها في أبحاثه ، لكنها سرعان ما تولت البحث بنفسها.

القوس الكهربائي في العمل. رصيد الصورة: توضيح العلم.

بعد ذلك ، قدمت مساهمات ملحوظة في تطوير وفهم القوس الكهربائي ، وهو شكل مبكر وقوي للإضاءة الكهربائية.

أنشأ أيرتون نقطتين رئيسيتين فيما يتعلق بعمل الأقواس الكهربائية. أولاً ، اكتشفت أن مشاكل إضاءة القوس الكهربائي مثل الهسهسة والوميض وعدم الاستقرار كانت نتيجة تلامس الأكسجين مع قضبان الكربون المستخدمة في إنشاء القوس.

ثانيًا ، اكتشفت آيرتون أنه عند استبعاد الأكسجين ، تم الحصول على قوس ثابت ، وبالتالي تمكنت من إنشاء علاقة خطية بين طول القوس والضغط وفرق الجهد ، "معادلة أيرتون".

بين عامي 1895 و 1896 ، نشرت آيرتون سلسلة من اثني عشر مقالاً عن تحليلها وأبحاثها والتطورات التقنية في مجال إضاءة القوس الكهربائي في الكهربائي، دورية الهندسة الكهربائية الرائدة في ذلك العصر. بهذه المقالات ، تفوقت على عمل زوجها السابق في هذا المجال وأنشأت أوراق اعتمادها كخبير في أعمال القوس الكهربائي وفي مجال الهندسة الكهربائية بشكل عام.

أدى هذا الاعتراف إلى زيادة الفرص بما في ذلك الدعوة لتسليم ورقتها الخاصة حول الأقواس الكهربائية قبل معهد المهندسين الكهربائيين (IEE ، IET الآن). كانت أول امرأة تقرأ ورقتها البحثية قبل هذا المجتمع الهندسي المرموق.

في عام 1899 ، تم انتخاب أيرتون كعضو في المؤسسة (MIEE) ، وهي مؤهل مهني مرموق ومعترف به على نطاق واسع. وهكذا ، أصبحت أيرتون أول عضوة في معهد الكهرباء والإلكترونيات وأول مهندسة كهربائية معترف بها مهنيًا.

دفاتر تتعلق بالبحث عن مراوح آيرتون.

كانت اهتمامات آيرتون البحثية واسعة النطاق ، وفي مطلع القرن العشرين ، تحولت اهتماماتها إلى البحث في دوامات المياه والهواء ، مما أدى إلى تطبيق منقذ للحياة استخدم خلال الحرب العالمية الأولى.

بعد أن استخدم الجيش الألماني الغاز السام لأول مرة في معركة إبرس الثانية في أبريل 1915 ، سرعان ما بدأ العديد من العلماء البريطانيين في تكييف أبحاثهم لمواجهة هذا السلاح الجديد الفتاك. في أوائل مايو 1915 وبعد فترة وجيزة من وصول أنباء استخدام ألمانيا للغاز إلى إنجلترا ، قدم أيرتون ورقة حول الاختلافات في الضغط بالقرب من العوائق في نقل المياه وبدأ في التفكير في كيفية تطبيق ذلك عمليًا من حيث إزالة الغاز من الخنادق.

طور أيرتون "مروحة آيرتون المضادة للغاز" ، وهي جهاز بسيط محمول باليد يستخدم لإزالة الغازات الكيماوية السامة من خنادق الخطوط الأمامية البريطانية خلال الحرب العالمية الأولى. كانت مروحة آيرتون المضادة للغاز بسيطة وتتألف من لوح من القماش المقاوم للماء مدعومًا ومشدودًا بإطار من القصب ومثبت بمقبض جوز.

بحلول منتصف مايو 1915 ، كانت أيرتون قد طورت نموذجًا عمليًا اختبرته في الحديقة الخلفية لصديقتها وزميلتها المناصرة لحقوق المرأة إرنستين ميل في كنسينغتون.

رفض مكتب الحرب اختراعها في البداية ولكن بحلول عام 1917 طورت آيرتون نسخة ميكانيكية محسنة من مروحة لها. بعد بعض التأخير ، تم استخدامه من قبل الجيش البريطاني وفي النهاية تم طلب أكثر من 100000 من مشجعي آيرتون المضاد للغاز. تم استخدام المراوح لإزالة الخنادق ، والحفر ، وحفر القذائف ، وحفر الغازات السامة ، على الرغم من وجود بعض الخلاف حول فعاليتها الحقيقية.

Throughout her lifetime and with the strong support of her feminist communities, Ayrton made an immense and diverse contribution to mathematics, physics and electrical engineering.

Her incredible life can be illuminated by three key artefacts: the 1884 patent for her line-divider her article series on the electric arc published in The Electrician in 1895 and the ‘Ayrton anti-gas fan’ developed to combat trench gas during the First World War.

Spanning four decades and three subject areas – mathematics, electrical engineering and physics – these accomplishments demonstrate the deep impact Ayrton had on these specialist technical and scientific subjects as well as on the emerging roles available to women in engineering.

قراءة متعمقة

Bruton, Elizabeth, 2018, ‘The life and material culture of Hertha Marks Ayrton (1854–1923): suffragette, physicist, mathematician and inventor’ in Science Museum Group Journal Issue 10 https://dx.doi.org/10.15180/181002

Henderson, F, 2012, ‘Almost a Fellow: Hertha Ayrton and an embarrassing episode in the history of the Royal Society (1902)’, https://blogs.royalsociety.org/history-of-science/2012/03/08/almost-a-fellow/

Jaffé, D, 2003, Ingenious women: from tincture of saffron to flying machines (Stroud: Sutton)

Sharp, E, 1926, Hertha Ayrton: A Memoir (London: Edward Arnold & Co)

Dr Elizabeth Bruton

Dr Elizabeth Bruton is Curator of Technology and Engineering at the Science Museum. She has previously held roles at Jodrell Bank Discovery Centre the Museum of the History of Science, Oxford and the University of Leeds. Interests include the history of communications, military history, museums, and archives. She also blogs at https://geekin9f.wordpress.com/

This blog will take you behind the scenes at the Science Museum, exploring the incredible objects in our collection, upcoming exhibitions and the scientific achievements making headlines today.


The Hissing of the Electric Arc

Around the end of the nineteenth century, Hertha spotted a problem which no one had a solution to. At this time, most streetlights (and other lights) working by using an ‘electric arc’. These arcs were made of 2 carbon electrodes with a small gap between them – small enough that current could still flow around the circuit.

A high voltage was passed through the circuit, heating up the carbon electrodes until the carbon vaporised and mixed with the air between the electrodes. This mixture of air and carbon vapour is highly luminous, so when current flowed through it ionised the atoms, they shone very brightly.

The problem with the arcs was their tendency to hiss and spark for no apparent reason. Through careful observation and study, Hertha’s experiments explained that the hissing was caused when oxygen came into contact with the crater formed in the carbon, causing burning. Hertha proved her result by excluding each of the components of air in turn – she found that the hissing only occurred when oxygen was present and concluded that this was the cause.

Hertha suggested that if the arc was protected from direct contact with air, there would be no hissing. Hertha’s research was a breakthrough and she was invited to read her paper in front of the Institute of Electrical Engineers (IEE). She must have impressed them – in 1899 she became the first woman ever to be elected to join the IEE. Hertha didn’t stop there – her next big work was an invention to help combat the poison gas which the enemies were using in the ongoing First World War.


Hertha Ayrton

AYRTON, HERTHA (née Marks 1854&ndash1923), British physicist of Jewish parentage. She married Professor W.E. Ayrton, whom she greatly assisted in his research, especially on the electric arc. She later established the laws that govern the behavior of the electric arc. She presented many papers on this and other subjects before the Royal Society of London and other scientific bodies. During World War أنا, she invented an anti-gas fan which was distributed to thousands of British troops. Ayrton explained the formation of sand ripples on the seashore and, at the time of her death, was investigating the transmission of coal gas. She was the first woman to become a member of the Institution of Electrical Engineers and in 1902 was nominated for election as a Fellow of the Royal Society. However, the election of a woman to the society was impossible at the time. She played a militant role in the campaign for woman's suffrage. Hertha Ayrton had two daughters, one of whom was the wife of Israel Zangwill and the other, BARBARA AYRTON GOULD (d. 1950), was a Labour member of Parliament and chairman of the Labour Party (1939&ndash40), and a forceful supporter of the Zionist cause in the House of Commons. Her son was the painter and sculptor, MICHAEL AYRTON (1921&ndash1975).

مصدر: Encyclopaedia Judaica. © 2008 The Gale Group. All Rights Reserved.

Download our mobile app for on-the-go access to the Jewish Virtual Library


Hertha Ayrton

Topics and series. This historical marker is listed in these topic lists: Science & Medicine &bull Women. In addition, it is included in the Women's Suffrage 🗳️ series list.

Location. 50° 47.984′ N, 1° 5.902′ W. Marker is in Portsmouth, England, in Hampshire County. Marker is at the intersection of Queen Street and St. James s Street, on the right when traveling east on Queen Street. Touch for map. Marker is at or near this postal address: 6 Queen Street, Portsmouth, England PO1 3HL, United Kingdom. Touch for directions.

Other nearby markers. At least 8 other markers are within walking distance of this marker. HMS Powerful Memorial (about 240 meters away, measured in a direct line) St. John the Evangelist (approx. 0.2 kilometers away) HMS Royal Sovereign Memorial (approx. 0.2 kilometers away) HMS Victoria Memorial (approx. 0.3 kilometers away) Charles Napier (approx. 0.3 kilometers away) HMS Centurion Memorial (approx. 0.3 kilometers away) HMS Orlando Memorial (approx. 0.3 kilometers away) Workers Memorial Day (approx. 0.3 kilometers away). Touch for a list and map of all markers in Portsmouth.


Hertha Ayrton - History

Reminiscences written by A. P. Trotter, President of The Institution of Electrical Engineers (London) . -.
Courtesy of IEE Archives.

I do not think that I met Mrs. Ayrton (Prof. Ayrton's second wife) until about 1895 when she began to contribute articles on the electric arc to The Electrician. Hertha Marks, of Jewish parentage, was one of those women who can pass the Cambridge Little Go after a few months' coaching instead of grinding for years over elementary classics like boys at public schools. She told me that she never regretted the time and trouble of acquiring a smattering of Greek, and agreed that the true object of a 'pass' examination is to discover the capability of acquiring knowledge quite apart from the value of that knowledge. From her youth she had many well-known literary friends.

Hertha Marks was placed equal to First Class in the Little Go, entered Girton, and sat for the Mathematical Tripos. Owing to inadequate coaching she elaborated some questions and left no time for others. It was said at Girton that one of her papers was of higher merit than that of the senior wrangler. But the result was that she took a Third Class. Silvanus Thompson relates in his Memoir of Lord Kelvin how he failed to be Senior Wrangler. It was a case of "bad generalship". In one paper he spent nearly all his time on a particular problem, lost time on it, and there was none left for other questions. Parkinson, the Senior Wrangler in 1845, had not only devoted himself to the art of answering examination questions but had acquired a very rapid handwriting.

Hertha Marks, who had already made the acquaintance of Prof. Ayrton, began to attend his lectures and laboratory in the autumn of 1884, and they were married in the spring of the following year.

During the Chicago Electrical Conference of 1893, a Negro servant lighted a fire with a paper written by Ayrton on "Variation of Potential Difference of the Electric Arc with Current, Size of Carbons, and Distance apart". No rough copy or even an abstract existed of the paper which had not been read in full, and had described an unfinished and inconclusive research. The experiments had been continued by Mrs. Ayrton who sent him her results twice a week by post.

She took up the research and he dropped it, not so much from disinclination to re-write the paper as from a staunch and largehearted wish that the credit for the work should be entirely her own: for Mrs. Ayrton had found that he had been at work on wrong lines. Her results were published in The Electrician and afterwards in book form in 1902. She and I were confrères in the study of the electric arc. I was already familiar with the conditions of her experiments, and we had many talks about them, both in my office as Editor of The Electrician, and at her Kensington Laboratory.

Ayrton had investigated the behaviour of the arc by slowly varying the current between limits for many hours at a time, in fact, often for the greater part of a day. The unhappy arc never had a chance of settling down to adjust itself to any particular current, and looped curves were the result. Mrs. Ayrton, by patient hand control, kept an arc under a steady current for more than an hour at a time, and arrived at a constant definite voltage, or potential difference, as Ayrton called it. She obtained consistent results, expressed them, first in plotted curves, and then as equations, and interpreted the work of previous investigators. Part of the work was on the conditions of the "hissing" arc. In my investigation on the rotating arc I had observed and avoided this stage, and she found that I appreciated her comparison of the handling of the arc to the driving of an obstinate animal after learning its caprices. The references in her book were most kind, and she presented some of my points more correctly and lucidly than I had done. In reply to my letter congratulating her on the publication of her book, and calling attention to a slip, she wrote, "Surely you know that it was a pure accident that your name came just where it did on p.454. I have far too great an admiration for your work on the light of the arc to couple your name with an error which, as you say, you share with so many others. Your experimental comparison of the light of the arc and the area of the crater visible, and your proof of the connection between the two, was a very valuable bit of work, [of] which, I am sure you will allow, I have made the fullest use, and I hope I have clearly expressed my great admiration of it as well… It is a great relief to be rid of the book at last — sometimes I used to think it never would be finished, and that when I died I would order the single word 'Arc' to be placed on my tombstone as a pathetic record of my sufferings". She little knew what sufferings some of her future work would bring.

Her paper on "The Hissing Arc" was read before the Institution of Electrical Engineers, of which she was elected a Member, in 1899. Blondel, who, as I have said, had worked at the silent arc, and had been troubled with the hissing, esteemed her work. I was at the Cape at the time, and started the first Local Centre of the Institution of Electrical Engineers at Cape Town. At a meeting of the Centre, at the South African College, I read her paper, reproduced several of her experiments, showed a lantern-slide portrait of their author, and attempted to describe her charming personality.

One of the conditions of the steady burning of the arc is the shape assumed by the ends of the carbons. A large square-ended carbon takes twenty minutes or more to settle down quietly after hissing, or rather roaring. She found that by properly shaping the ends, the arc was in good order a few seconds after recarboning. Acting on this, the Admiralty and War Office standardized the carbons used for searchlights. Crompton had long before used small negative carbons in order to avoid the shadow cast by them. The limit of their size was their fragility, and sometimes they were run nearly red hot. Mrs. Ayrton suggested that they should be coppered to carry the current, and this was adopted both by the Admiralty and by the War Office. Soon after her death in 1923 I spoke about her work to a Royal Engineer Officer. He was contemptuously incredulous that a woman could have had anything to do with search lights. He had probably never seen any other kinds of carbons. On the other hand C. H. Wordingham, Electrical Engineer-in-Chief of the Admiralty, became well acquainted with Mrs. Ayrton's work.

It was rather unfortunate that she gave the title "The Hissing of the Electric Arc" to her paper. Those of her audience who had anything to do with arcs knew that they sometimes hissed and gave reduced light, but few of them attached much importance to it. For the London Press the important thing was that a woman should address an audience of engineers. She was described as "a little dark-haired, dark-eyed lady, wearing pince-nez, who created a sensation which perhaps accounted in some degree for the unusually large attendance of young men members" and The Spectator observed with some superiority that it could understand the admiration excited by Mrs. Ayrton's lecture better than the surprise, and held that women have a distinct proclivity towards science and mathematics, finding them less exhausting than either history or mathematics".

These quotations from Evelyn Sharp's Memoir of Hertha Ayrton show the rubbish that we must expect from the Press when the ordinary journalist attempts to deal with science, while the Memoir is a striking instance of how a lay author, if the expression may be permitted, can write with accuracy and judgement on technical subjects.

She relates how Professor Ayrton had been requested by the Admiralty in 1903 to investigate the strange behaviour of electric arcs in powerful searchlights. "The four reports submitted to the Admiralty in 1904 - 8 were treated officially as his, although Mrs. Ayrton had assisted greatly in drawing up the three earlier reports, and the fourth was actually sent in over her own name because it embodied her unaided researches, and Professor Ayrton insisted that this should be made clear when it was forwarded to the Admiralty. The official mind, however, seemed unable to grasp that the work was not really done by the man who had been commissioned to do it and perhaps it is unreasonable to expect too much of the official mind … the fee was sent to her husband".

Carbon manufacturers with whom Mrs. Ayrton was in frequent communication recognized the importance of her improvements. She was consulted by a cinematography company who wished to avoid the sputtering and hissing of small arcs. The behaviour of cored positive carbons in which a pith of soft material burns away and helps to hollow out the crater was well known to her, and she had used cored negatives. But a negative, having no light-emitting crater, should be pointed. Sometimes carbon is deposited on it from the positive, giving rise to irregular "mushrooming". She made experiments to improve the pointing of the negative, and, contrary to all practice, she made soft negatives with hard cores and patented the invention shortly before the War. The result was a practical success, but arc lamps are now being superseded, not only in cinemas but in street lighting by improved incandescent lamps.

The wrinkles and ridges of sand on the sea shore attracted her attention and scientific inquisitiveness. They bear some resemblance to the ripples on the surface of a liquid, but are obviously of a different nature. A long and intricate research was undertaken, and in publishing the results she decided to call them ripples. Vaughan Cornish had carefully studied, described and photographed waves of water, sand and snow, but that was not enough for Mrs. Ayrton. Like young Clerk Maxwell, she wanted to know "What's the go 'o that?". Cornish had made world wide observations. For Mrs. Ayrton a couple of square yards on the Margate shore sufficed.

I have only a copy of the first of her Royal Society papers to refer to, and a few of her letters to me, and will not go into details, but I cannot forget the beautiful experiments which I have watched. After her husband's death she turned the large drawing-room of her house at 41 Norfolk Square into a laboratory, and equipped it with glass tanks. Some were a yard long and about ten inches wide and deep, filled with water, and a layer of sand about an inch deep on the bottom. They were mounted on rollers and moved to and fro to make waves swing backwards and forwards. Some were kept in motion by electric motors.

The movements of waves and eddies of perfect fluids under assumed or imaginary conditions have been a favourite theme for mathematicians. It is necessary in such treatment to get rid of some of the practical circumstances. In the teaching of elementary mechanics inextensible cords run over frictionless pullies, in thermodynamics the behaviour of impossible engines is considered, and in electrical engineering, ironless transformers at one time occupied much attention. The results of mathematical investigations of waves and vortices have been expressed in mathematical terms. Mathematics is a method of description, and mathematical analysis is generally a reduction to a statement in the form of an equation. In many cases this result cannot be expressed in the language of words. Lord Rayleigh and Prof. George Darwin had made such calculations, but they had done more, for they were both experimenters.

Mrs. Ayrton began with pure experimental observation, and made few if any assumptions. It is difficult to compress her work into a few words. She began by making a ridge across the bottom of a tank, and set the water swinging to and fro. Water passing over the ridge curled down and formed a roller eddy or cylindrical vortex near the ridge, scooping the sand up backwards against the ridge. "After a few more oscillations not only did these grow into very decided ridges, but each of them had, in its turn, originated fresh furrows and ridges, and soon the whole of the space between the original ridge and both ends of the trough was covered with the ripple-mark".

The movement of the sand which at her will formed itself into beautifully regular patterns was apparent enough, and the wave form of the surface of the water was obvious, but between them existed the internal motion of the water. One of the ways in which she traced this was to put a morsel of permananate of potash on the edge of the ridge. The passing water swept a thin stream of coloured fluid and curled at first down, then backwards, and then upwards forming a complete spiral. In some experiments, in order to separate reciprocating movement from flow, she interposed exceedingly thin films of indiarubber. She eventually hit on the employment of finely powdered aluminum. This exhibited with perfect clearness the beautiful sight of a dance of silvery ribbons tracing out the eddies which she created. Needless to say, Lord Rayleigh fully appreciated the translation of his mathematics into this graceful form. He was that kind of man. George Darwin had made calculations in 1884 as well as experiments, and was not quite satisfied on some points, but welcomed her work. And there were other mathematicians.

In her research on the electric arc she had carried all before her, and produced the standard book on the subject and she made herself mistress of sand ripples. As I have said, mathematicians had busied themselves with theoretical waves and vortices. I do not know if Mrs. Ayrton found that her practical observations conflicted with their rigorous results probably not. When they were offered to the Royal Society, criticisms were raised, and she was sensitive about them, for there was an apparent conflict. Her paper was rejected by the referee but Lord Rayleigh entered the lists, championed her cause, her paper was accepted, and the Hughes gold medal was awarded to her for this and her work on the electric arc. They accepted several other papers from her.

She met with a very different reception in Paris. Not content to demonstrate the formation of sand ripples, she investigated the movements of water, and contributed to the Société Francaise de Physique a paper on the formation of sand ripples and on the internal movements of water. To write the paper in French and fluently to deliver it in that language was no difficulty, nor was the transport of the glass tanks and other apparatus and the performance of the experiments a task beyond her powers, but a long paper on a very different subject was on the programme, and she was nearly crowded out. Such experiments as time permitted went off well, her interpretations were received and cordially appreciated, and the President said that in this race between experimental and theoretical science theory had for the present been overtaken, even existing mathematics were not able to deal with the subject, which remained to be explained by les mathématiques de l'avenir.

Her work on the electric arc aimed and arrived at practical results her investigation of the production of sand ripples may be said to have been the outcome of scientific inquisitiveness but she turned it to an application of great importance at that time, in the War. Those who saw her experiments at home or the results at the front cannot forget them, but few of the younger generation have heard of them, and that is why, admiring her work as I do, I will put my recollections on record. Early in 1915 the Germans with fiendish brutality began to use poison gas. She thought that eddies of air might be used to repel gas attacks.

Air is a very different fluid from water. The one has, in the scientific sense, low elasticity, its easy compression is accompanied by heating, it is light and almost impalpable the other is almost incompressible, capable of massive motion and more obvious internal and skin friction. To anyone else the idea was so wild as to be absurd. But she was so thoroughly acquainted with her subject, and had such a sound knowledge of physics, that she saw that in dealing with fluids the question of scale was of little importance. To imitate a gas cloud she used the smoke of brown paper, but this while warm tended to rise above her laboratory battle field (the glass tanks and sand and water had been cleared away). Cooling chambers and pipes were devised and made, and smoke poured out and rolled along the floor. A few flaps with a card on a matchbox serving as the parapet of a trench drove it back.

I did not see the experiments until they had developed, and model "dug-outs" and "pill-boxes" had been built. These could be cleared of smoke with a few flaps of a tiny square paddle or fan. The fan with a flexible blade rather more than a square foot in size was mounted on a T-shaped handle. When smacked on the ground facing the on-coming gas, the cross bar of the handle hit the ground first, the blade flattened out, and sent a puff of air. The friction of the ground retarded the lower part of the puff, which became a vortex cylinder. When smoke rings are formed at the end of a gun, or the funnel of a locomotive, or the lips of a smoker, the central part of the puff advances faster than the edges, and so a ring is formed revolving on itself. Discussing this with Mrs. Ayrton, I asked where the ends of the vortex cylinder were, for I had the impression that a vortex ring must be continuous and cannot be cut. I cannot remember her reply, but it may have been that the under surface of the blade retards the air, and forms an upper vortex cylinder rotating in the opposite direction. But whether the two join to form a ring, I cannot say. An ordinary smoke ring increases in size as it travels, and induces a blast of air to pass through it. It was this that drove the gas back. Of Mrs. Ayrton's originality, perseverance and enthusiasm I was aware, but I found her greatly depressed, and showing a sensitiveness of disposition that was new to me. She could stand up to academical mathematicians, but now she was up against officialism. I must confess that the toy-like models in her laboratory-drawing room seemed a long way from the battlefield. So far as experiments went they were convincing when she showed them to me, and many who saw them, including intelligent soldiers, were impressed. But those who did not or would not come, and those who refused to give the invention a trial, the exasperating officials who would not listen to anything new because they shirked the responsibility of giving a decision, were obstacles with which she has not reckoned and did not know how to deal. The three years spent in brown paper smoke were not all concerned with research, that was soon done her labour was to convince others.

I had nearly twenty years of government officialism, and already, during the war, something of the military variety. We discussed in confidence, without going into psychological analysis, the strange constitution of the official mind. I could only sympathize with her and show her that she was not the only special victim of obdurate nonchalance of those who were trained to be afraid of considering a thing on its merits, and so dutiful in clinging to a policy.

In spite of the disheartening opposition commonly shown to inventors at this time, several supplies of gas-repelling fans were sent to the front. These were not intended to be merely waved about, and perhaps the name "fan" was unfortunate. The inventor almost accidentally, perhaps intuitively, acquired the knack of using it in the best way, and this needed instruction. One of her assistants from the Central College went out and demonstrated the proper use of the fans, and a few officers were convinced of their value. If the reports which she showed me had been published, they must have come into general use, but the safest way to deal with a report is to consider it as confidential, and to put it away safely in a pigeon hole.

Discouraged and almost in despair after trying for two years to gain the attention of the War Office, she asked me to help her with the Admiralty. Thirty years had passed since I had dealings with that Service. I knew very few officers: Bacon had been a contributor to The Electrician, but he was at sea, and I recommended C. H. Wordingham, Electrical Engineer in-Chief of the Admiralty, with whom I was well acquainted. I have a letter from him dated Nov. 21, 1917, thanking me for the introduction and saying that he was going to see a demonstration. He was a practical engineer and was convinced on the spot, and thought that the use of such fans would be valuable for emergency ventilation of ships.

It must be remembered that when poison gas was first used in war, chlorine, a heavy gas, was blown across by the wind. The Ayrton fan was quite capable of rolling it back in the open, and, unexpectedly, even I think by Mrs. Ayrton, of clearing dugouts into which gas had fallen.

The practical successes of her sand ripple and of her fan experiments led to further researches in hydrodynamics. She read a paper before the Royal Society on "Local Difference of Pressure near an Obstacle in Oscillation in Water", using a manometer designed and made by her, and wrote another on the effect of skin friction on vortices. She discussed some of this work with me, and I could admire her skill in constructing the apparatus, and could follow the experimental work, but her mathematical discussion which always followed the observational part was beyond me.

To add to her troubles it was bitter for her to find that her active sympathy with the women's suffrage movement was impairing her scientific work and prejudicing her position. I think she never spoke to me of this until the last time that I saw her, when my wife and I visited her. Barbara Gould, her daughter, was present, and 1 learned what strong and extreme views they held on political questions. It was perhaps the only time, except once when I visited her and her husband during his last illness at Little Badow near Chelmsford, that we did not converse on scientific matters on which we could see eye to eye. She died in August 1923.

Hertha Ayrton was one of the last of the workers in physical science to start from experimental observation, to design and construct the apparatus in the laboratory, to carry through the research almost single handed, to discuss in mathematical language the process and the result, and to leave traces of the personality of the work in the method employed. Nearly all later work has been done with complicated commercial instruments in well-equipped laboratories, and is carried on by group or team-work, often under a director.


Spotlight on Women in Electrical Engineering History: Hertha Ayrton

The Hughes Medal, a prestigious honor awarded by the Royal Society of London to recognize original scientific discoveries, “particularly [in] electricity and magnetism or their applications”, has been handed out to pioneers in the field of electrical sciences for almost 115 years. In 1906, the prize went to a 52-year-old scientist and electrical engineer for her “experimental investigations on the electric arc.” That scientist was Hertha Marks Ayrton. During the century-long history of the Hughes Medal, only two women have ever been recipients of the award. Hertha Ayrton was the first.

In the late 1800’s, carbon arc lamps were commonly used for lighting in commercial and industrial settings, but arc lamps had serious drawbacks. Their illumination was inconsistent. They often hissed and sputtered, and changed color. Carbon arc lamps were also used for searchlights, where their continuously varying arc lengths required adjustments of the searchlight’s mirror, creating a nuisance for the operator. Ayrton was determined to understand why arc lamps were plagued by these issues. In 1893 she began conducting experiments on the electric arc. She discovered that the “hissing” produced by the arc is actually due to oxygen contacting the lamp’s carbon rods, and not due to evaporation, as was previously thought. She published her findings in The Electrician in 1895, and four years later she was invited to read her paper, “The Hissing of the Electric Arc”, aloud before the Institute of Electrical Engineers (IEE, now known as the Institution of Engineering and Technology.) Ayrton was the first woman to ever read her own paper aloud to the IEE, and she became the first woman elected to their membership. In 1902, she compiled her research into a book, The Electric Arc.

Hertha Ayrton was no stranger to inequity in the male-dominated world of the sciences. In 1902, she was nominated to be a Fellow of the Royal Society of London, but she was ultimately denied the fellowship due to the Royal Society’s charter that prevented married women from becoming Fellows. Much like her close friend, Marie Curie, Ayrton dealt with detractors who claimed that her success was largely due to her husband, English Physicist and Engineer William Edward Ayrton. “Errors are notoriously hard to kill,” wrote Hertha, “But an error that ascribes to a man what was actually the work of a woman has more lives than a cat.”

From the lowly, hissing arc of a carbon arc lamp, to the incredibly powerful destructive force of an arc flash, the electrical arc has been a subject of study and research for electrical engineers for over 200 years. The team at PowerStudies, Inc. is grateful for the historical contributions of all the men and women who have worked tirelessly to shed light on the behavior of the electrical arc.


Watch the video: HERTHA MARKS AYRTON Podcast Lila 06 Cosas de MUJERES (يوليو 2022).


تعليقات:

  1. Cassivellaunus

    يتفقون معك تماما. إنها فكرة ممتازة. وهي على استعداد لدعمكم.

  2. Gowyn

    هذه الفكرة الرائعة ، بالمناسبة ، تسقط فقط

  3. Delman

    انا أنضم. وقد واجهته.

  4. Dogis

    موضوع لا نهاية له



اكتب رسالة